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ABSTRACT 

We obtain a theorem giving a condition for algebraicity of an element in a 
formal power series field of characteristic p > 0. Using it many results can be 
proved, for example, the "theorem of the diagonal" of Furstenberg is deduced 
as an easy corollary. 

Introduction 

Let p be a prime number  and q be some power of p.  I f  k is a field of  
characteristic p,  k[[x]] will denote the formal power series ring with coeffi- 

cients in k and indeterminates x = (x~ . . . . .  xm). k((x)) will denote the quo- 
tient (or fraction) field of k[[x]]. We consider the elements in k((x)) which are 
algebraic over k(x). About those elements there are several well-known results. 
The first is the following theorem of  Christol et al. in [1 ]. 

THEOREM 1. I fk  is a finite field of  q elements, then an element f in  k[[x]] is 
algebraic over k(x) i f  and only i f  f is q-recognizable. 

But in fact they proved the following: 

THEOREM 1'. An element f i n  k((x)) is algebraic over k(x) i f  and only i f f is  
contained in an A-stable finite subset of k((x)). 

('A-stable' will be defined in Section 1, Definition 2.) 

The second result concerns diagonal map D. Let t be an indeterminate over 

k. Then D is a (infinite) k-linear map from k[[x]] to kilt]] defined by 
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D(x~, , . . . ,x~r)  = t" (if nl . . . . .  n,, = n) or 0 (otherwise). 

The following famous theorem was proved by Furstenberg [4] in the rational 
ease and, in general, more recently by Deligne [2]: 

THEOREM 2. I f  an element f i n  k[[x]] is algebraic over k(x), then D ( f )  is 
also algebraic over k(t). 

The third are the problems concerning the products of Hadamard, Hurwitz 
and Lamperti (cf. Fliess [3], Furstenberg [4] and Section 2). 

In this paper we generalize Theorem 1' and prove: 

THEOREM 0. Let k be a perfect field o f  characteristic p > 0, and f be an 
element in k((x)). Then f i s  algebraic over k(x) i f  and only i f f is  contained in an 
A-stable finite k-vector subspace of  k( (x )). 

This Theorem 0 is 'fundamental' for formal power series fields of charac- 

teristic p > 0. Using Theorem 0, we can prove all known results mentioned 
above, and much more. For example, we deduce Theorem 2 easily as Corollary 
l of the Theorem, and as Corollary 2 we generalize Theorem A in [4], that is, 
Hadamard products of algebraic elements in k[[x]] are also algebraic. Further, 
in Section 2 we generalize the Corollary 2 and prove that Lamperti products of 
algebraic elements in k[[x]] are also algebraic. Though this is proved for a 
single invariant x, it is clear that the method of the proof is applicable for 
sequences of several indeterminates x. 

Section I 

Let k be a field of characteristic p > 0 and q some power o fp .  

NOTATION. In general we denote by n an integer vector (n~ . . . . .  ns), 
that is, a vector of dimension m with integer coordinates. For integer vector 
n, [hi denotes maxl_~_~m(In~[). Let R be the set of integer vectors 
r = ( r l , . . . ,  rm) with conditions 0 ~ r, < q. For integer vectors n, n' we shall 
write n =<n' if and only if we have n i g h :  for i = l , . . . , m .  We 

denote n + n '  for (nt + n i , . . . ,  nm+ n;~), and so for r in R, qn + r  = 
(q.n~ + r~ . . . . .  q'nm + rm). For an integer vector n, a,,.....,, and x~',. • .x~  
will be abbreviated to a, and x" respectively. For a polynomial f in k[x], 
deg(f)  is defined to  be max~.~_~ m (degx, (f)).  

Every element of k((x)) is expressed (not uniquely) as a quotient f/gq of 
power series f ,  g where 
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f =  Y, a,x" and g = Y, b,x'. 
0 < .  O<a 

Here 0 is the integer vector ( 0 , . . . ,  0), and a, ,  b, are elements of k. 
We set K = k((x)) = Q(k[[x]]), and denote by Hthe algebraic closure ofk(x) 

in K. As is well known, H is the fraction field of the henselean ring k ( ( x ) )  
(H = Q(k( (x) )) of. [51). 

DEFINITION I. Let k be a perfect field. For each element r in R we define 
A,, the (infinite) additive endomorphism of k[[x]], by 

A , ( f ) =  ~ (aqR+r)llqx ". 
0<, 

A, can be uniquely extended to the (infinite) additive endomorphism of 
k((x)) by 

A,( f lg q) = ( l/g)A,( f) .  

REMARK. The endomorphisms A, satisfy the following equalities for ele- 

ments f,  g in k((x)): 

(a) A,(g. f q) = A,(g). f ,  
(b) f =  Z,x'[A,(f)] q. 

DEFINITION 2. Let k be a perfect field. We shall say that a subset M in 
k((x)) is A-stable if, for each element r in R, M contains A, ( f )  with f. 

'Theorem 0' in the introduction is contained in the following and this is a 
generalization of Theorem 1 in [ 1 ]. 

THEOREM 0'. The following conditions are equivalent for a perfect field k: 
(a) f is contained in H. 
(b) f is contained in an A-stable k(x )-finite submodule M of  K. 
(c) f is contained in an A-stable k-finite subspace V of K. 

PROOF. (c)~(b):  Let f . . . .  ,fro be the basis of V. Denoting by M the 
k(x)-submodule of k((x)) generated by f ,  we prove that M is A-stable. Let 
g = c~f + • • • + cmfm be an element of M. The coefficients ci are elements of 
k(x) and they are quotients of elements ai, bi in k[x]. For the sake of simplicity 
we write a, b, c , f  for ai, b~, c~,f. Then it is sufficient to prove that A,((a/b)f) 
is contained in M. 

Let N=max(deg(a),deg(b)); then deg(a .bq-l)<qN, and we can write, 
with elements a,., in k, 
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/ 

a .b q-I ~" ~ a,.,x" " x  q" 
$ ,ll 

where the summation is over s in R and I n t --< N. Using this notation, we have 

A,(c f )  = A,((a/b  ) f )  = A,((abq-1)/bq) f )  
! 

= Y~ ((a,. ,)l '~/b)x'A,(x'f).  
$,1 

Now by the following Lemma, A , ( x ' f ) ) =  x" . A , , ( f )  (s + s ' = q  .e + r). And 

they are contained in M, therefore A,(c f )  is contained in M. 

LEMMA 1. Let s '  be an element o f  R and n be an integer vector, then for 

g = x q" +", A, (x'g) = (d.  x ' ) .A , ,  (g) where s' + s = qe + r' and d = 1 ( i f r  = r') 

or 0 (otherwise). 

PROOF. We have x ' g = x q ' + ~ " + ' ) = x  ql'+'~+''. If r # r '  then clearly 

A,(x 'g)  = 0, and if r = r '  then A,(x 'g)  = x" +' = A,, (g)x'. 

The following two arguments are dependent on [1], Sections 6, 7 but the 

meaning of  the symbols is slightly different. 

(a)=*(c) (cf. [1], Sections 6, 7): Let f b e  an element o f H .  T h e n f  q' (0 < i) 
generate a finite k(x)  submodule of  k((x)); so fsatisfies an equation 

ai "fq' = 0 
i=0  

with aj in k[x]. 

CLAIM. We may assume ao ÷ O. 

PROOF OF CLAIM. If ao = 0 then we have 

ai " f¢  = 0 
i - - j  

with aj # O. As 

(u a positive integer) 

a j  ~" Y~ X r"  [ A r ( a j ) ]  q :]~ 0 

there is an element I in R such that At(aj) ÷ O. Now 
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(u ) 
0 = A 1 i~=j a t • fq' 

= ~ Al(ai)"  fq ' - ' .  

By denoting a: = Al(ai+L) (j  -- 1 < i < S -- 1) we have 

U--I  

Y~ a:.fq' = 0 (a:_l ~ 0). 
i ~ j - -  1 

After finite repetition we get the form with a0 =~ 0. 

Let g = f/a0, then by setting bi = - at. a~'- 2 it clearly follows that 

g = ~ big ¢. 
i = 1  

Let L = max(deg(a0), deg(b~)) and V be the k-vector subspace of k((x)) 
spanned by x'  "gq' with Is I < L and i < u. Then clearly Vis finite, A-stable and 

contains f.  

(b) =* (a) (cf. [ 1 ], Section 6): Let M b e  a finite k(x)-submodule of K. Let M '  be 
the k(x)-submodule of  K generated by the q-th power of elements of M. Then 
clearly we have dimktx)(M')=< dimk~x)(M)). On the other hand, for every 
element f i n  M, A , ( f )  is contained in M. As M '  contains [A,(f)] q, it also 
contains f ,  because by Remark (a) 

f =  2 x ' [A, ( f )]  q. 

AS we find that M '  contains M and they have the same finite dimension, we 
have M = M'.  For every element f i n  M, M c o n t a i n s f  qi, so that f i s  algebraic 
over k(x). q.e.d. 

Let k '  be a subfield of  the perfect field k, and kbe  algebraic over k'. Then it is 
clear that an element f i n  k'((x)) is algebraic over k'(x) if and only if f is 
contained in H.  So we may eliminate the perfectness assumption of  k. 

As previously mentioned, D denotes the diagonal map from k((x)) to k((t)). 

COROLLARY 1 (Theorem of Furstenberg and Deligne, cf. [2], [4]). I f  an 
element f i n  k[[x]] is algebraic over k(x), then D ( f )  is algebraic over k(t). 

PROOF. f is contained in an A-stable finite k-subspace M in K, and D(M) 
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is also a finite k-space in k((t)). Setting e = (1 , . . . ,  1) we have Ar(D(f))  = 
D(Ar.,(f)), so D(M) is also A-stable. 

Let f, g be elements in K; then f , g  is defined by 

f . g =  Y~ a , . b , . x "  
O<m 

(Hadamard product, cf. Section 2) where 

f =  ]~ a,x" and g - -  Y, b,x ' .  
0.<~ O<m 

Then we have a generalization of Theorem A in [3] as: 

COROLLARY 2. Let f ,  g be elements ofk[[x]] and algebraic over k(x). Then 
f . g is also algebraic. 

PROOF. Let V be an A-stable finite k-subspace containing f and g. If 
f , . . . ,  f, form the basis of V, then f • fj generate an A-stable finite k- vector 
subspace which contains f .  g. 

Section 2 

Let f, g be elements of k[[x]]. The following pairings of k[[x]] are known as 
the Hadamard product and Hurwitz product, respectively: 

where 

and 

f . g = Y. a.bnx", 
O<n 

f ( H ) g =  nCkakbn_k X n, 
O<n \ k - O  / 

f =  ~ a.x", g =  Y. b.x", 
O<=n O<=n 

,Ck = n!/I(n -- k)! k!]. 

Lamperti generalized those products by 

f (L  )g = ~. c.x", 
O<n 

where 
n~ 

c. = ]~ : ------~ j! 
i + j + k - n  1. 
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and a, b and c are elements in k. 
The cases of Hadamard and Hurwitz are obtained from the Lamperti 

product, respectively, by setting a = b -- 0, c = 1 and a = b = 1, c = 0. If l a n d  
g are algebraic and f o r  g is rational (i.e. contained in k(x)) ,  then it is known 

that f ( L ) g  is algebraic for characteristic p > 0 (cf. [3]). 

By using Theorem 0 we prove: 

COROLLARY 3. Let  k be af ield o f  characteristic p > O. I f f  , g are elements o f  
k[[x]] and algebraic over k(x), then f ( L  )g is also algebraic. 

PROOF. We can assume without loss of  generality that k is perfect. As the 

pairing (L) is bilinear, it is sufficient to prove the following proposition. 

PROPOSITION. Let  rCs,t = (r!)/[s! t! (r - s - t)!]. Then 

A,(  f ( L  )g) = Y, rCs,ta~/qbt/qc t'-~-t)~q . (A~_t ( f ) (L  )A,_~(g)). 
O < s , t < s + t < r  

The following lemma is necessary for the proof of  the Proposition. 

L~MMA 2. In the f ield o f  characteristic p > O, it fol lows that 

.Cm,I = ,C~,t" ,,Cm,,l, ( i fn  = qn'  + r, m = qm'  + s, l = ql' + t, 

O< s + t < r ,  O < m '  + l' < n'), 

-- 0 (otherwise). 

PROOF OF LEMMA 2. Now, nCm,t is the coefficient of  X m Yt in the expansion 
of(1 + X + Y)q"'+r. But we have in our context 

(1 + X - t -  y), . ,+, -- (1 + X - t -  Y)'(1 + X  ¢ + Yq)"'. 

PROOF OF THE PROPOSITION. By setting G(n; i , j ) =  aibic " - i - i ,  we have 

n! 
f ( L ) g =  ~ - - a i b J c k a i + k b j + k X "  

i+j+k-,  i ! j !  k! 

- Z .C. ""-"J'"-Icl+m-"a b " "  
- -  - m , n  - l  ~ u I m J "  

C(n,n - m , n  - l )  

= Y~ .C ._m, ._ tG(n;  n - m ,  n - l)atbmx" 
C(n,n - m , n  - l )  

= (*), 

where ZCt.,m,t) denotes summation over integers with 0 < 1, m < 1 + m < n. 
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By L e m m a  2 and us ing  subst i tut ions  n = q n ' +  r ,  

n - l = q l '  + t ,  n '  - m '  = m "  and n' - l' = l", we  have  

n - m  = q m ' + s ,  

(*) = Y~ rCs,t Y~ ..Cm, t ,G(qn'  + r; q m '  + s, ql' + t) 
C(r,s,t) C(n',m',l') 

• aq(n,_l,)+(r_t)bq(n, m,)+(r_s)X qn'+r 

---- ~ r C s , t G ( r ; s ,  t )  Y~ , , C , , - m , , , , - t .  
C(r,s,t) C(n',n'- m",n'- 1") 

• G(n' ,  n '  - m " ,  n '  - l")qaql.+~r_obq,..+~r_s)x q"'+r. 

Now it is clear that 

A r ( f ( L ) g )  = Y~ rC~,t G(r; s, t) ~'q ~ . ,C. . -m. , . , - t .  
s,t C(n',n' - ra",n' - l") 

• G(n' ,  n ' -  m" ,  n '  - l")(aqt.+~r_,))l/q(bqm.+~r_~))~/qx "' 

~" ~ rCs,t G(r; s,  t )'/q. (Ar- t (  f ) ( L  )Ar-,(g)) .  q.e.d. 
$,t 
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