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ABSTRACT
We obtain a theorem giving a condition for algebraicity of an element in a
formal power series field of characteristic p > 0. Using it many results can be
proved, for example, the “theorem of the diagonal” of Furstenberg is deduced
as an easy corollary.

Introduction

Let p be a prime number and ¢ be some power of p. If k is a field of
characteristic p, k[[x]] will denote the formal power series ring with coeffi-
cients in k and indeterminates x = (x,, ..., X,). k((x)) will denote the quo-
tient (or fraction) field of k[[x]]. We consider the elements in k((x)) which are
algebraic over k(x). About those elements there are several well-known results.
The first is the following theorem of Christol et al. in [1].

THEOREM 1. Ifkis afinite field of q elements, then an element fin k[[x]] is
algebraic over k(x) if and only if f is q-recognizable.

But in fact they proved the following:

THEOREM 1’. An element fin k((x)) is algebraic over k(x) if and only if fis
contained in an A-stable finite subset of k((x)).
(‘A-stable’ will be defined in Section 1, Definition 2.)

The second result concerns diagonal map D. Let ¢ be an indeterminate over
k. Then D is a (infinite) k-linear map from k[[x]] to k[[¢]] defined by
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D(xp,...,xp)=1t" (fny=-.--=n,=n) or0 (otherwise).

The following famous theorem was proved by Furstenberg [4] in the rational
case and, in general, more recently by Deligne [2]:

THEOREM 2. Ifan element fin k[[x]] is algebraic over k(x), then D(f) is
also algebraic over k(t).

The third are the problems concerning the products of Hadamard, Hurwitz
and Lamperti (cf. Fliess [3], Furstenberg [4] and Section 2).
In this paper we generalize Theorem 1’ and prove:

THeorReM 0. Let k be a perfect field of characteristic p >0, and f be an
element in k((x)). Then fis algebraic over k(x) if and only if fis contained in an
A-stable finite k-vector subspace of k((x)).

This Theorem 0 is ‘fundamental’ for formal power series fields of charac-
teristic p > 0. Using Theorem 0, we can prove all known results mentioned
above, and much more. For example, we deduce Theorem 2 easily as Corollary
1 of the Theorem, and as Corollary 2 we generalize Theorem A in [4], that is,
Hadamard products of algebraic elements in k[[x]] are also algebraic. Further,
in Section 2 we generalize the Corollary 2 and prove that Lamperti products of
algebraic elements in k[[x]] are also algebraic. Though this is proved for a
single invariant x, it is clear that the method of the proof is applicable for
sequences of several indeterminates x.

Section 1
Let k be a field of characteristic p > 0 and ¢ some power of p.

NoTATION. In general we denote by » an integer vector (n,,...,n,),
that is, a vector of dimension m with integer coordinates. For integer vector
n, |m| denotes max,;<,(|7;|). Let R be the set of integer vectors
r=(ry,...,r,) with conditions 0 = r; <gq. For integer vectors n, n’ we shall
write m =n’ if and only if we have m,=n/ for i=1,...,m. We
denote n +n’ for (n,+nj,...,n, +n,), and so for r in R, gn +r =
(g-my+n,...,q-n, +r,). For an integer vector n, a,_, and xp---x’p
will be abbreviated to g, and x* respectively. For a polynomial fin k[x],
deg( f) is defined to be max, 5, < »(deg, (/).

Every element of k((x)) is expressed (not uniquely) as a quotient f/g? of
power series f, g where
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f=3 ax" and g= ) bx"

0=~» 0=<»

Here 0 is the integer vector (0, . . ., 0), and q,, b, are elements of k.

We set K = k((x)) = Q(k[[x]]), and denote by H the algebraic closure of k(x)
in K. As is well known, H is the fraction field of the henselean ring k((x))
(H = Q(k((x))) cf. [5].

DerFINITION 1. Let k be a perfect field. For each element r in R we define
A,, the (infinite) additive endomorphism of k[[x]], by

Ar(f)= Z (aqu+r)1/qx.'

0zn

A, can be uniquely extended to the (infinite) additive endomorphism of
k((x)) by
A,(f1g?) = (Ug)4,(f).

REMARK. The endomorphisms A, satisfy the following equalities for ele-
ments f, g in k((x)):

(@) A4,(g-f)=4,(8)-f,

() f=Z,x4,(NH".

DEeFINITION 2. Let k be a perfect field. We shall say that a subset M in
k((x)) is A-stable if, for each element r in R, M contains A4,( f) with f.

‘Theorem 0’ in the introduction is contained in the following and this is a
generalization of Theorem 1 in [1].

THEOREM (. The following conditions are equivalent for a perfect field k:
(a) fis contained in H.

(b) fis contained in an A-stable k(x)-finite submodule M of K.

(¢) fis contained in an A-stable k-finite subspace V of K.

PrOOF. (c)=(b): Let f,,..., f,, be the basis of V. Denoting by M the
k(x)-submodule of k((x)) generated by f;, we prove that M is A4-stable. Let
g=c fi+ - +cnfnbean element of M. The coefficients c; are elements of
k(x) and they are quotients of elements a;, b; in k[x]. For the sake of simplicity
we writea, b, ¢, f for a;, b;, ¢;, f;. Then it is sufficient to prove that 4,((a/b) f)
is contained in M.

Let N = max(deg(a), deg(b)); then deg(a-b?~!) <¢N, and we can write,
with elements a, , in k,
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’
a-b''=y a,,x"-x™

where the summation is over s in R and |n| = N. Using this notation, we have
A,(cf)=A4,((a/b) f) = A,((ab?~")/b?) f)
=3 (@,a) "/b)x"4, (x'f).
Now by the following Lemma, 4,(x*/))=x*-4,(f) (s +s'=¢g-e +r). And
they are contained in M, therefore A4,{cf) is contained in M.

LEMMA 1. Let s’ be an element of R and n be an integer vector, then for
g=x"" A(x'g)=(d-x°)-A,(g) wheres’+s=qge +r andd =1 (ifr =r’)
or 0 (otherwise).

PROOF. We have x'g=x®*0'*+)=xit+atr If rop’ then clearly
A, (x'g)=0, and if r =r’ then 4,(x’g) =x"** = 4, (g)x".

The following two arguments are dependent on [1], Sections 6, 7 but the
meaning of the symbols is slightly different.

(a)=(c) (cf. [1], Sections 6, 7): Let fbe an element of H. Then f* (0 <i)
generate a finite k(x) submodule of k((x)); so fsatisfies an equation

Ya-f*=0 (uapositive integer)
i=0

with g; in k[x].
CLAIM. We may assume a, # 0.

ProOOF OF CLAIM. If gy = 0 then we have

iai.f"‘=0

i=j
with aj #0. As

4 =3 x"-[4,(a))* #0

there is an element / in R such that 4,(g;) # 0. Now
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u N
0=A1( 2 a 'fq'>
i=j

= i Aay- [

i=j

By denoting a; = A;(a;, ) (j — 1 =i <5 — 1) we have

u—1
Y a-f*=0 (aj-, #0).

i=j—1
After finite repetition we get the form with a, # 0.

Let g = f/a,, then by setting b, = — a; -a§ ~? it clearly follows that

g= X bg”.
i=1
Let L = max(deg(a,), deg(h;)) and V be the k-vector subspace of k((x))
spanned by x* - g with |s| = Land i < u. Then clearly Vs finite, 4- stable and
contains f.

(b)=(a) (cf. [1], Section 6): Let M be a finite k(x)-submodule of K. Let M’ be
the k(x)-submodule of K generated by the g-th power of elements of M. Then
clearly we have dimy,(M’) = dim,,(3)). On the other hand, for every
element fin M, A4,(f) is contained in M. As M’ contains [A4,(f)]?, it also
contains f, because by Remark (a)

S=2x[4,(N).

As we find that M’ contains M and they have the same finite dimension, we
have M = M’. For every element fin M, M contains /¢, so that fis algebraic
over k(x). g.e.d.

Let k' be a subfield of the perfect field k, and k be algebraic over k’. Then it is
clear that an element f in k’((x)) is algebraic over k’(x) if and only if fis
contained in H. So we may eliminate the perfectness assumption of k.

As previously mentioned, D denotes the diagonal map from k((x)) to k((2)).

CoroLLARY | (Theorem of Furstenberg and Deligne, cf. [2], [4]). If an
element fin k[[x]] is algebraic over k(x), then D( f) is algebraic over k(t).

PROOF. f is contained in an A4-stable finite k-subspace M in K, and D(M)
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is also a finite k-space in k((¢)). Setting e =(1,..., 1) we have 4,(D(f)) =
D(4,..(f)), so D(M) is also A-stable.

Let f, g be elements in K; then f» g is defined by
f*g= L a,-b,-x"

0<n
(Hadamard product, cf. Section 2) where

f=Yax" and g= 3 bx"

0sn 0<n
Then we have a generalization of Theorem A in [3] as:

COROLLARY 2. Letf, g be elements of k[[x]] and algebraic over k(x). Then
[*gis also algebraic.

PrOOF. Let V be an A-stable finite k-subspace containing f and g. If
Jis .., f, form the basis of V, then f; » f; generate an A-stable finite k-vector
subspace which contains f*g.

Section 2

Let f, g be elements of k[[x]]. The following pairings of k[[x]] are known as
the Hadamard product and Hurwitz product, respectively:
f*g = 2 anbnxn’

0=n

fiHg=3% (ki anakbn—k>x",

0=n =0

where

and
G =nY(n— k0K

Lamperti generalized those products by
fiL)g =X c,x",

0=n
where
1

Chn =

ik
o 'a'b’C a; by ik
ivitk=nitjtk!
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and a, b and c are elements in k.

The cases of Hadamard and Hurwitz are obtained from the Lamperti
product, respectively, by settinga =b=0,c=1landa=5b=1,c =0.If fand
g are algebraic and for g is rational (i.e. contained in k{x)), then it is known
that f(L)g is algebraic for characteristic p = 0 (cf. [3]).

By using Theorem 0 we prove:

COROLLARY 3. Let k be a field of characteristic p > 0. Iff, g are elements of
k[[x]]) and algebraic over k(x), then f(L)g is also algebraic.

ProoF. We can assume without loss of generality that & is perfect. As the
pairing (L) is bilinear, it is sufficient to prove the following proposition.

ProposITION. Let ,C;, = (r')/[s! t! (r —s —t)!]. Then

A4(fig)= T C,a" bt (4, (LA, - (8)).

0ss,tSs+esr
The following lemma is necessary for the proof of the Proposition.
LEMMA 2. In the field of characteristic p > 0, it follows that
iCmi=1Cos*nCop (fn=gqn’+r,m=gm’ +s,l=4ql'+1,
0=s+t=r,0=m+1l'=n),
=0 (otherwise).

PROOF OF LEMMA 2. Now, ,C,,, is the coefficient of X™Y" in the expansion
of (1 + X + Y)™+", But we have in our context

4+ X+ =(1+X+Y)y(1+X"+Y9)".

PROOF OF THE PROPOSITION. By setting G(n; i,j)=a’'b’c*~~/, we have

n! o
fL)g= Y ——abicka; 1 b i x"
i+j+k—nl!_]!k!

—_ Z "Cn_m'"_lan~mbn—lcl+m—na1bmxn

Cinp—mpn—1)

= Y  CacmaiGn;n—m,n—Dab,x"

Cinn—mmn—1)

=(),

where 2, ., denotes summation over integers with 0=/, m </ +m =n.
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By Lemma 2 and using substitutions n=gn’+r, n —m=gm’+s,
n—Il=ql’+t,n"—m’=m” and n’ — I’=1", we have

(*) = E rCs,t 2 n'Cm’,I'G(qn’ + r qm’ + S, ql, + t)

C(r,s,t) C(n’,m’,l")

4
: aq(n’—l’)+(r—t)bq(n’—-m’)+(1—s)an §

= 2 rCs,tG(r; S, t) E n'Cn’—m”,n’-—l"

C(r,s,t) C(n',n’—m”.n’=17)
G’ n' =m0 = 1") gy iybgmr - X7
Now it is clear that

Ar(f(L)g) = 2 rCs,tG(r; S, t)”q z n'Cn'—m”,n’—I”
st

C(n’,;n’—m”.n'=1")
* G(n', n'— m”a n'— 1”)(aql"+(r—l)) 1/q(qu”+(r—s)) I/qxn'

=2 .G, G(r; s, )" (4, (fUL)A, - (8))- q.e.d.
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